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Chapter 1

Definitions

The following terms are defined for the reader’s clarification and are emphasszed at their
first occurrence in the text.

CONTOUR: A contour is a collection of points representing a curve. The collection of
points is determined to represent the patient’s body, major organs or a change in tissue
density as determined by a computerized tomography (CT) Scan. Therefore, in this
application the curve will always be a closed curve and there are no contour-contour
intersections.

INHOMOGENEITY: In this context inhomogeneity merely means that the subject to be
irradiated is made of matter of varying densities.

PATHLENGTH: The length of the beam from source to calculation point or point of
interest. The calculation point is typically moved through the patient in the area of the
tumor and any sensitive organs that may be affected by the radiation to present a dose
distribution across this area.

DENSITY: In the context of radiation therapy, density(p), can be defined as the ratio of

the mass energy absorption coeflicient of the material to that of water, e.g.:

_ HBmaterial

water

EFFECTIVE PATHLENGTH: This is the pathlength of the beam through the body taking

into account the inhomogeneities. It is determined by computing the length of the beam
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through each contour of a different density and incorporating the density of the contours

into the pathlength. The basic formula for determining the effective pathlength is:

CalculationPt o
EffectivePathlength = densstyofpath d(length) o>
SourcePt
The effective pathlength yields the radiation dose at the point of interest by using the W

derived radiation dose data for the homogeneous medium water at a depth equal to the
effective pathlength. Further discussion of the effective pathlength is contained in Section
3.6.
PLANE UNIT NORMAL: The plane unit normal for a plane in 3-space is the vector that o
is perpendicular to the plane and is of length 1. It can be most easily found by extracting
the constants A, B, and C from the equation for the plane, using Az + By+ C = 0 as the
equation of the normal, and then dividing by the length VAT ¥ BZ ¥ C2.
DIRECTION COSINES: The direction cosines are the angles formeq by a line with each
l of the axes.
SCALAR EQUATIONS: The symmetric scalar equations are a representation of the re- -
lationship of the change of each of the coordinates along a line. The three-dimensional

scalar equation of a line through two points Po(zo, yo, 20) and Py(z;, 1, 21) is written: o

r— X9 _ Y¥Y—Y _ 22— 20

1 — %0 Y1 — Yo 21— 2

BEAM MODEL: A mathematical description of the absorbed dose of radiation produced
by a single radiation beam in a patient equivalent medium. ';.-.
PATIENT EQUIVALENT MEDIUM: A medium for which the absorbed dose is known

from laboratory data. All material is related to water, chosen density 1.0, which most :';
closely approximates the majority of the human body.

ISODOSE CHARTS: The distribution of absorbed dose produced by a single beam in
a reference geometry. A digitized isodose chart is one that is represented by a two-

dimensional matrix for computer data input and interpolation. See Figure 3.2 on page
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DOSIMETER: A radiation sensitive device. In most cases, dosimeter refers to the radi-
ation sensitive device and its reading equipment, e.g., ionization chamber (device) and
electrometer (reader), or film and densitometer.

CT SCAN: Short for Computerized Tomography Scan. A numerical representation of the
attenuation coefficients of x-rays in the tissue being scanned, which is then projected as a
gray scale image of these coefficients. This means that based on the attenuation of the x-
rays, the gray scale image will represent the varying densities of the body. For an example
see Figure 3.1 on page 10. Also known as a CAT (Computer Assisted Tomography) Scan.
TRANSVERSE AXIAL TOMOGRAPH: An earlier and rougher version of the CT Scan
where the patient was in the sitting position. The image was not as clear and its results
were not as effective as the CT Scan.

ALDERSON RANDO PHANTOM: Mock-up of the human body with major internal
organs represented.

PENUMBRA: The region on the edges of a radiation beam where a transition occurs from
points that are exposed to primary radiation from the whole beam dource to points that
are exposed to no primary radiation. It is denoted as P in Figure 1.1.

TISSUE-AIR RATIO(TAR): The ratio formed by irradiating water(known in radiation
oncology as a water phantom) and air with a beam of a specific radius at a specific depth.

It is represented by the following formula:

where: Ry is the radiation dose reading at depth d in water of a bezam with radius ry.
Rx: is the same reading in air,
TISSUE-MAXIMUM RATIO(TMR): Ratio similar to the TAR above except that it is the

ratio formed by the the irradiation of a tissue mass over that of a water phantom,c.g.:

TMR(d,rq) = %”-
X
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Figure 1.1: Radiation Beam showing the Source(S), the Penumbra(P), and the Source to
Surface Distance(f,).

where: Ry is the radiation dose for the tissue mass at a depth d.
Ry is the reading in water as above.

DOSE DISTRIBUTION: The manner in which the total radiation dosage received from
all radiation sources is distributed over the patient cross-section. Since there can be
multiple radiation sources it is the sum of the individual distributions of these sources.
It is normally displayed to the technician or clinician by a wireframe diagram of specific
radiation levels, e.g., frames showing 30, 60, 90, and 150 rads.

SOURCE TO SURFACE DISTANCE (SSD): This is the distance from the radiation beam

source to the surface of the tissue to be irradiated. It is represented by f, in Figure 1.1.
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Chapter 2

Introduction

With the continued advances in technology and computer hardware and software an
increasing number of specific computer applications are being presented in the area of
medical treatment. One of these specific areas is cancer research, treatment and planning.
This investigation deals with the subtopic of radiation therapy treatment planning where
the goal is to accurately predict the physical eflects of a proposed dose of radiation on a
cancer or other malignant disease, the adjacent non-malignant tissue, and any sensitive
organs. This requires defining the patients’ physical dimensions, the dimensions and
location of the tumor, the arrangement of the radiation sources, and the desired region
of calculation of the radiation dose. The computer program must be able to calculate
and display the resulting predicted radiation dose dsstrsbution. In order to select the
optimal treatment, the physician must be able to evaluate many simulated treatments
and ascertain the most effective and safe treatment. This has led to the development
of several methods of calculating the dose distribution for a beam source external to the
patient. The method used in this investigation involves finding the length of the path of an
external radiation source through a three-dimensional variable denssty mass representing
the human body, determining the effective pathlength of the beam, and using one of the
beam models to determine the dose at that pathlength. (For definitions see Chapter 1).

The effective pathlength computation involves tracing the radiation beam through the

contours of interest. This procedure is called ray-tracing and is similar to the ray-tracing

.
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used in computer graphics in such areas as surface rendering or shading. In graphics these

rays are traced from the viewer, through the corners of the picture elements to or through iy
the desired object. The ray is then intersected with the object to determine the angle
of intersection for use in shading or light reflection calculations. In this application the
radiation beam becomes the ‘focal point’ of the viewer and the beam is traced through
the desired volume to a specified array of points. The rays are traced through the repre-
scntation of the patient and the effective pathlength of each ray calculated to present a
dose distribution to the clinician.

This thesis encompasses the following major areas:

1. A discussion of the history and background of representing patient dimensions, beam
models used in computer calculations, and methods of determining the eflective

pathlength.

2. The design and implementation of the two dimensional ray-tracing or intersection \ ‘
methods compared here. The first is an adaptation of the Bentley-Milan Method ?!
as accomplished by Dr Ira J. Kalet of the University Hospital Radiation Oncology
Department. The second is a design and implementation of the Duda and Hart Strip R
Trees 2 for representation of the patient contours and then intersection of the beam

with the contours.

3. The development of a three-dimensional algorithm with the incorporation of the two

above methods and a speed comparison. *

1J. Milan and R. E. Bentley, The Storage and Manipulation of Radiation Dose Data in
a Small Digital Computer, British Journal of Radiolgy, Volume 47, Number 554, February N
1974, pp. 115-121. N
2R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, 1973.
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Chapter 3

The Use of the Computer in
Radiation Therapy

In this chapter the history of the use of computers in radiation therapy planning and
treatment will be covered. Although a short history of slightly morc than a quarter century,
it is one that has already been through a growth period and then experienced a period of
stagnation in the application of the methods and procedures developed. In this chapter
the following areas will be addressed: the clinical requirements for radiation treatment
software, methods for modelling the external and internal regions of the patient, the basic
beam models developed for an idealized patient, requirements and methods for altering

the idealized model, and finally three methods of computing the effective pathlength.

3.1 The Beginning

K. C. Tsien ! is usually credited with the first application of automatic computing ma-
chinery to dosage calculations in 1954-55. He reduced #sodose charts for a single radiation
beam to tabular form and stored the data on punch cards. This could then be manipulated
to produce dose distributions {or multiple beams whose possible locations were specified

by the clinicians. Beginning with this attempt, further developments and procedures were

1K. C. Tsien, Application of Automatic Computing Machinery to Radiation Dose Cal-
culations, British Journal of Radiology, Volume 28, Number 332, August 1955, pp. 432-
439.
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investigated to ease the workload and increase the efficiency of the calculations for the
technicians and clinicians in radiation therapy. The actual methods developed by the
investigators were determined to a large extent by the locally available computer facilities

and to a greater extent by their involvement in actual clinical problems.

3.2 Clinical Requirements

Technically, beam therapy involves the manipulation of a finite set of parameters which
control the behavior of the beam in time and space relative to a target in a patient. Ra-
diotherapy is still mostly empirical in nature and not all of the criteria for optimization
of radiation therapy in any given case is known. Therefore, the purpose of these com-
puter methods is to provide the radiotherapist with sufficiently accurate information ca
the physical aspects of the proposed treatment of a patient. This information must be
produced within a reasonable amount of time, require minimal preparatory action, and
be displayed in easily and directly interpretable form. This allows management and/or
manipulation of the input parameters to optimize the proposed treatment.

There are two essential areas in the radiation therapy planning process. These are the
patient model and the beam model. The patient model is an adequate description of the
relevant portion of the patient in terms of shape and composition. The beam model is
a mathematical description of the absorbed dose produced by a single beam in a patient

equivaient medium.

3.3 The Patient Model

The patient model requires that the external contour and internal structure of the
patient be adequately represented in some manner. For many years representing the
patient’s external contour in two dimensions was considered acceptably accurate. Some

of the more common techniques included the interlocking beads technique, the dipstick
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principle (not automotive), the parallel prong device, and the pantograph.? The internal

structure was approximated for many years by outlines taken from a representation of
the human body in a cross-sectional anatomy atlas. This was very crude but the only
way, short of opening up the patient. Eventually some treatment centers were able to use
a transverse azial tomograph that gave better information, but the use of the CT Scan,
with its first commercial appearance in 1972, facilitated the representation of the internal
structures. This also led to increased emphasis on the handling of inhomogenesties in the
beam model, which will be covered in Section 3.5.

The importance of the accuracy of the internal representation was demonstrated by
Sontag et. al.3 One of the sections of an Alderson Rando Phantom of the chest region
was radiographed and then dossmeters placed inside. The phantom was reassembled and
irradiated by a cobalt beam with the dosimeters measuring the actual dose received.
Using the old method of the cross-sectional anatomy atlas and the newer method where
the radiograph represents the CT Scan, the dosages were calculated and compared to the
actual dose. In the anatomy atlas method, when no correction was made for the different
densities of the lungs and bones, the difference hetween calculated and actual dosage was
on the average about 10%, with a maximum difference of 30%. When a density correction
method was applied, improved accuracy was obtained for some points, but for points
in the area of the lung wall where the largest change of density took place maximum
differences increased. When the correct anatomical information was used (radiograph),
the difference between calculated and measured dosages was 3.4% on the average and 7%%
on the maximum. It is the use of the CT Scan that has madc the proper representation

of both the internal structures and surface outline more viable and allowed much greater

*Michael J. Day and R. M. Harrison, Cross-Sectional Information and Treatment Sim-
ulation, Radsation Therapy Planning, Bleehen, Glatstein, and Haybittle, ed., 1983, pp.
89-95.

3M. R. Sontag, J. J. Battista, M. J. Bronskill, and J. R. Cunningham, Implications
of Computed Tomography for Inhomogeneity Corrections in Photon Beam Dose Calcula-
tions, Radiology, Volume 124, Number 1, July 1977, pp. 143-149.
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accuracy in the patient model and therefore in the outcome of the treatment planning

process. For an example of a CT Scan see Figure 3.1.
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Figure 3.1: Example of a CT Scan
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3.4 Beam Models

—y e v w ¥
TR

The beam models used fall into a limited number of categories. In fact, the basic
formula for the accumulated dose at a point (z,y, z) is the same for all models and can

be stated as follows:
D(z,y,z) =N Z Py, S YWiCi(2', ¥, 2")
k
where:
¢ (z,y, 2) is the point in the patient coordinate system.

e (z',y', 2') is the same point in the beam coordinate system.
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e N is a suitable normalization factor.

Pi is the amount of dose at (z',y',2') in an idealized water-equivalent geometry.

This factor is known as the percentage depth dose.

Wy is the weight factor for beam k.

Cy is the total correction applied for any difference between the situation for which

Py refers and the actual situation.

In the next four subsections the structures of several types of beam models, i.e., bases
for the percentage depth dose (Ps) will be discussed, and then corrections necessary for

surface curvature and inhomogeneity will be covered.
3.4.1 Isodose Charts

The first beam model method to be discussed is the isodose chart. The digitized isodose
chart, upon which K. C. Tsien first applied computing machinery to dose distribution
calculations, is used to compute directly the dose distributions from the isodose matrix
determined by superimposing a grid matrix of points over an experimentally dctermined
dose distribution. The value at any arbitrary point is obtained by applying some method
of interpolation between the points. The accuracy of this, of course, depends on the
spacing of the grids and the gradient within that area. For an example of an isodose chart
see Figure 3.2 on page 12.

An example of an economically stored digitized isodose chart that became a commercial
treatment planning system was the Programmed Console(PC) developed by W. E. Powers
and J. R. Cox of St. Louis.* In this application a nonorthogonal coordinate system was
used in which lines diverging from the radiation source and lines at a series of depths

defined the grid. The PC was a forerunner of a number of commercial systems since it

4). R. Cunningham and J. Milan, Chapter 6 in Computers in Biomedical Research,
Stacey and Waxman, ed., New York, 1969, page 159.
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Figure 3.2: Isodose Chart Using Standard Grid Matrix

pioneered the concept of a small dedicated computer for radiation therapy. It was also
the first system designed specifically with two basic principles in mind: special adaptation
to graphical input and output and minimum cost. The PC handled graphical input by
a special device called a rho-theta device with a linear and circular potentiometer. The
programs were entered on magnetic strip cards. Manipulation of the viewing window
and beam sources on an oscilloscope display allowed some ability of optimal treatment
planning and then the chosen distribution could be printed on an incremental plotter.
The main problem with digitized isodose charts is that the information is at best of

the same quality as that obtainable by the manual conventional method, mainly because

it is a statement of dose as a function of position. A serious disadvantage is that it does \‘

not offer the possibility of extension into the third dimension. Due to thesc problems and :{~

those with the acquisition and storage of the charts this method did not become widely ,

used. I,
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3.4.2 Special Functions

The second beam model method to be covered is the use of special functions to rep- 2
resent the beam distribution. Several mathematical functions were developed during the N
decade of 1964-74 which approximate the absorbed dose at any arbitrary point. Four of
B these are presented here as a representation of the development of usuable functions of
this period, two developed for two-dimensional use and two for three-dimensional. All
four were specifically developed for routine clinical use with digital computers with the o
primary objective of reducing data over the digitized isodose chart. R

The formula for the dose common to all of these mathematical functions is the product

of two functions:

D(x,y,z) = P(y) x F(z,z) (3.1)
. where: t
e P(¥) is the percentage depth dose on the central ray at depth y.

- e F(x.z) is a function expressing the ratio of the dose at point (x,z) with depth y to Y

3 the dose on the axis at depth y. -

This section will present four methods of expressing F(x,z) (F(x) in the two-dimensional 2
case).

The first two-dimensional function to be covered was developed by Richter and Schirr-
meister.®® They adapted an existing empirical expression for the central ray dose of a

Cobalt-60 beam and included the off-axis behavior by means of complicated curve fitting.

. 5J. Richter and D. Schirrmeister, Ein Verfahren zur Berechnung der Dosisvertcilun- ;
. gen mit digitalen Rechenautomaten (A Procedure for Calulating Dose Distribution with
. Computers), Strahlentherapse, Volume 123, Number 1, January 1964, pp. 45-58.

8J. Richter and D. Schirrmeister, Die Beriicksichtigung von Gewebeinhoriogenitaten :
bei der Ermittlung von Dosisverteilungen mit digitalen Rechenautomaten (Handling Tis- -
sue Inhomogeneities in the Calculation of Dose Distribution on Computers), Strahlenther- .
apse, Volume 127, Number 4, August 1965, pp. 550-559. .
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They had to develop different equations for different values of a parameter £. It represented
the relationship between the distance of a point off the central axis of the beam to the
fractional difference in the Source to Surface Distance(SSD) and the SSD plus depth of
the tissue.
Another two-dimensional function was developed by Siler and Laughlin.” They were -j.'4
tlie first to introduce a semi-empirical function for the calculation of the absorbed dose
at an arbritary point, though still in a single plane. The term F(z) in equation 3.1 (no

]

o

z term since only 2D) was called the ‘off-center ratio’ in reference to the distance off the ﬂ
central axis of the beam. This idea is closely related to the ‘decrement line’ concept to be 1

A
e T e a e

covered in Section 3.4.3.

In the domain of three-dimensional functions Sterling et. al.® employed mathematical
P

I-I

curve-fitting techniques to obtain expressions for P(y) and F(x,z). They developed a

cumulative, normal probability distribution for F(x,z) which represented the dose at a

. "y

T

2 R
ool

point x-distance and z-distance away from the central axis of the beam, at depth y. This
was mainly chosen because the sigmoidal shape resulted in a close fit to experimental dose
profile data.

The second of the three-dimensional functions was developed by Van de Geijn.? In

his work the formula was expressed in terms of the appropriate tissue-air ratio, the back-
scatter factor, the inverse square of the fraction relating the distance to the peak dose to the
distance to the point of interest, and the product of the x and z distance off-axis ratios. It
was an extremely useful model and was incorporated into a commercial treatment planning

system called the Philips TPS(Treatment Planning System). This model was developed

TW. Siler and J. S. Laughlin, A Computer Method for Radiation Treatment Planning,
Communications of the ACM, Volume 5, Number 7, July 1962, pp. 407-408.

8T. D. Sterling, H. Perry, and L. Katz, Automation for Radiation Treatment Planning,
IV, Derivation of a Mathematical Expression for the Per Cent Depth Dose Surface of a
Cobalt-60 Beam and Visualization of Multiple Field Dose Distributions, British Journal
of Radiology, Volume 37, Number 439, July 1964, pp. 544-560.

2J. Van de Geijn, Computational Mecthods in Beam Therapy Planning, Computer Pro-
grams in Biomedicine, Volume 2, Number 3, 1972, pp. 153-168.
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further by a group at Memorial Hospital into a widely used commercial method that is
covered in Section 3.5.5.

These four mathematical beam models succeeded in making the representation of ra-
diation distribution easier for computer calculation. The next step was to adapt these
idealized methods for body curvature and inhomogeneities, and then investigate methods
of representing the contours and finding the depth to the calculation point or point of

interest.
3.4.3 Decrement Lines

Another way of representing a radiation beam was proposed by Orchard.!® This
method is very similar to the isodose chart method in which a grid system is used to cover
the beam representation. However in this case, lines are drawn from the source as a loci
of points where the doses are fixed fractions of the dose at that same depth on the central

axis of the beam. (See Figure 3.3)

This method is a statement of dose as a function of position similar to the isodose

chart and is therefore not particularly useful for computer input.

3.4.4 Separation of Absorbed Dose

The last of the four methods for representing beam models to be covered was developed
by Cunningham ! in whose work the total dose of radiation is separated into the primary
and scattered components. Both components are calculated by semi-empirical means. By
separating the two components, Cunningham developed a method that, while accurate,
was too slow for everyday use and diffucult to adapt for the non-idealized situation. It is

more often uscd for the calculation of basic data for special situations or other algorithms.

10p G. Orchard, Decrement Lines: A New Presentation of Data in Cobalt-60 Beam
Dosimetry, British Journal of Radiology, Volume 37, Number 442, October 1964, pp. 756-
763.

1] R. Cunningham, Computer Methods for Calculation of Dose Distribution, Radiation
Therapy Planning, Blechen, Glatstein, and Haybittle, ed.,1983, pp. 217-263.
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Figure 3.3: Decrement Lines on a Beam Representation -
3.5 Corrections to Idealized Models -
N
All basic beam models refer to the idealized situation: a regular-shaped beam at right
angles to a flat surface of a homogeneous medium of water density(1.0). If the area to be o
irradiated is at an angle to the direction of the beam, then account must be taken of this :::
W
angle. In all the beam models the actual pathlength is used so obliquity is not addressed -
in these methods. Only in the isodose chart based methods and methods accounting
for a scattered dose component are corrections necessary for body curvature. Since the
treatment may also require irradiation through a portion of the body that has varying '_‘

densities, all beam models must be adapted to account for inhomogeneities. The following
sections will cover some of the more common methods of dealing with body curvature and

inhomogeneities.
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Figure 3.4: Isodose Shifts for Obliquity and Inhomogeneity

3.5.1 Isodose Chart Corrections o

In methods using the isodose chart as a basis(isodose matrix models, decrement lines,

etc.), an ‘isodose shift’ is used as a correction for obliquity and inhomogeneity. The body

T Tr Ty
.

curvature method involves ‘shifting down’ an isodose chart. Using Figure 3.4(a) as an

Do

example, the depth of Q;, dy, is measured parallel to the central axis of the beam. The

T

length d is found from d = a(do — d;) where the value recommended for ‘a’ varies from } b

“ e e .
LN

to % To read the corrected dose value for Q; from an isodose chart, the chart is shifted

distance d along the line indicating the beam axis and the chart now reads correctly for

.2

points along the line through Q; parallel to the central axis of the beam.

The correction for inhomogeneities is similar in that the chart is shifted a specified e
distance. In this case the shift distance is proportional to the pathlength in or through
the inhomogeneity. Using Figure 3.4(b) the length of the ray to Q2 is do and the length =
through the inhomogeneity is d. The shift distance is found by relating the density of
the inhomogeneity to the equivalent medium density(1.0). This distance, the equivalent :'

depth, becomes d.q = do + (p — 1)d, and the isodose shift distance becomes a downward
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%
shift of (1 — p)d for p < 1 and an upward shift of (p — 1)d for p > 1.

~
3.5.2 Batho Power Law N

o

Sontag and Cunningham!? built upon a method developed by H. F. Batho for handling
inhomogeneities. The basis for this method is to develop a relationship between the tissue-
air ratios for the different density media. This results in a correction factor(CF) that,
multiplied by the idealized dose for the point of interest in a homogeneous medium, gives
the adjusted dose for this point. !

Referring to Figure 3.5, Batho developed an equation for the correction factor as
follows:

CF =

T ) (32)

T(d2, A

where A is the field dimensions of the beam and the tissue-air ratios are determined by:

1. T(dy, A) is the tissue-air ratio of the point of interest at depth d; in tissue with

density p, where in Batho’s formula p, = 1.0(equivalent density).

2. T(dz2, A) is the tissue-air ratio of the point of interest at depth dz in tissue with

density p;.

Sontag and Cunningham generalized the equation for the case when the point of in-
terest lies within a medium of density other than one, and accounted for the differences
in the atomic numbers of the different density masses by adding the ratio for the mass
energy absorption coeflicients, p. Their resulting formula is called the ‘Generalized Batho
Equation’ and is:

T(ay, Ay=r (%2),,

CF = g apn ()

(3.3)

3

12M. R. Sontag and J. R. Cunningham, Corrections to Absorbed Dose Calculations for
Tissue Inhomogeneities, Medscal Physics, Volume 4, Number 5, September/October 1977,
pp. 431-436.
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Figure 3.5: Inhomogeneity Example for the Batho-Power Law

where the point of interest lies in the mass at depth d2 with a density of p, and the
overlying inhomogeneity is of thickness (d2 — dy) which is the same as it was for the
equation 3.2. The only difference in the tissue-air relationship from equation 3.2 and
equation 3.3 is that p, is not assumed to be the equivalent density of 1.0.

Using this equation, the pathlength is found and this CF used to account for the
inhomogeneity. For multiple inhomogeneities a CF is determined for each homogencity
individually and a composite correction factor calculated by the product of all the individ-
ual correction factors. The actual pathlength of the ray is used and therefore no additional
correction factors are required for obliquity.

While the experimental results in this paper show excellent accuracy, Wong and
Henkelman!3 did more extensive comparisons and calculations and showed that large

beam fields and the multiplicative rule of correction factors for multiple inhomogencities

13). W. Wong and R. M. Henkelman, Reconsideration of the Power-Law(Batho) Equa-
tion for Inhomogeneity Corrections, Medical Physics, Volume 9, Number 4, July/August
1982, pp. 521-530.
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diminish the accuracy of the Batho correction. They proposed several changes to decrease
the errors in these cases. However, the ray-tracing effort is still required to determine the
pathlength through the heterogeneous medium, then the idealized dose must be deter-
mined, the correction factors for each inhomogeneity calculated, and finally the combined
CF multiplied by the idealized dose for every point to be charted. For everyday use, the
speed of the computations appears to be the determining factor for not using this method
for treatment planning. However, it would be extremely useful for the calculation of basic

data for special situations or other algorithms.
3.5.3 [Equivalent TAR

The equivalent tissue-air ratio{ TAR) method was developed by Sontag and Cunning-
ham.'* The essence of this method is that a quantity may be determined for phantoms
containing non-water equivalent materials by scaling the depth and field size in an appro-
priate manner. This is accomplished by scaling the tissue-air ratio by the density of the

surrounding tissue. For a homogeneous medium this expression is:
T(d,r), =T(d-p,r-p)

For an inhomogeneous medium, a weighted average is found for the distance to the

point, d', radius of the scattered components, r', and density of the paths, p', as follows:

1. The weighted average distance, d', is determined by the sum of the individual dis-
tances of each segment through each inhomogencity times the density of the inho-
mogeneity, divided by the number of segments:

n

dl

14M. R. Sontag and J. R. Cunningham, The Equivalent Tissue-Air Ration Mcthod for
Making Absorbed Dose Calculations in a Heterogeneous Medium, Radiology, Volume 129,
Number 2, December 1978, pp. 787-794.
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2. The weighted average radius, r’, is found by the product of the radius and the

weighted average density: r' =r - p'.

w

. The weighted average density is calculated by the sum of the surrounding densities

scaled by weighting factors, e.g.:

' i X 2k pijk - Wik
1 e Wik

where the weighting factors are complicated expressions of which most can be pre-

calculated and stored as a table.

Using these weighted averages the equivalent TAR becomes:
T(d',r') =T(d',0)+ S(d,r)

where T'(d',0) is the tissue-air ratio for the primary radiation and S(d',r') the scattered
radiation tissue-air ratio.

Sontag and Cunningham have also adopted a method to simplify the integration of
the computation over the total volume called a ‘coalescing procedure’. However, even
with this assumption, though the accuracy tested excellent, the method appears to be
extremely slow due to the multiple weighted average calculations in the tissue-air ratio
computation. The testing discussed in the article covered the accuracy, but no timing. It
is interesting to note that the determination of the average weighted distance, d', includes

the computation of the effective pathlength as will be discussed in Section 3.6.
3.5.4 Delta Volume Method

After testing several methods as mentioned in the Batho Power-Law section, Wong and

Henkelman addressed the calculation of dose from the viewpoint of the CT Scan itself.13

15]. W. Wong and R. M. Henkelman, A New Approach to CT Pixel-Based Photon
Dose Calculations in Heterogeneous Media, Medical Physics, Volume 10, Number 2,
March/April 1983, pp. 199-208.

.,
] LI
..

CAEN

v AN

[T
'a'e o w .

2"
0

o,




22

This method uses the picture elements generated by the CT Scan as a basis for calculations.
They deduced that most methods of clinical dose calculations correct for the primary dose
but, since scattered doses are approximated, the merits of any method depend on how well
this ts accomplished. Wong and Henkelman then developed an augmented first scatter dose
by the typical ray-tracing method and approximated the residual multiple-scatter dose.
Wong et. al. further developed this method into what is now called the ‘Delta Volume
Method’.'® The final expression for the total dose was:

S ARm(pd, pr)

Primary(med) + E pilASy () foifri+ SARm(d,r)

[Sm(w) + Y Z;—”iAH;]
where:

e (med) means in the heterogeneous medium.

e (w) means in water(equivalent density medium).

e The term 3 AS} ;(w) is the first-scatter dose of the sth element (1,1) adjusted for the
change in primary attenuation, f;;, the change in first-scatter attenuation, f;;, and
density, p;, and as much of the total scatter dose that behaves like the first-scatter

dose, hence the term, ‘augmented first scatter dose’.

e The last term is sum of the sth void (AH;) times the relative density difference
of the element from its average environment. (7 being the mean density of the
heterogeneous medium) This plus the remaining scatter dose is multiplied by the

ratio of the scatter-air ratios using the density scaling method.

The specifics of these terms are not as important as the fact that the result of exper-

imental verification show this method to account for several specific situations that other

18J. W. Wong, E. D. Slessinger, F. U. Rosenberger, K. Krippner, J. A. Purdy, The Dclta
Volume Method for 3-Dimensional Photon Dose Calculations, Proceedings of the Eighth
International Conference on the Use of Computers tn Radiation Therapy, IEEE Computer
Society Press, July 1984, pp. 26-30 and 78-82.
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3
- methods do not. However, this method does require the same ray-tracing time expendi- |
X ture as all methods calculating the scattered dose of radiation. Wong et. al. implemented :;:
this method and determined that about two days are required just for the attenuation E:"
calculations. So, while this method appears to be the closest yet to performing the dose :
: calculation with reasonable accuracy for all situations, two days is still too long for radi- y
ation treatment planning. The methods used for treatment planning must be faster and ;ﬂ_
therefore cannot afford the time expenditure involved in this type of ray-tracing. :
: 3.5.5 Memorial Hospital Method
. A group at the Memorial Hospital in New York continued development of the ‘Off- :
Center Ratio’(OCR) Method as developed by Van de Geijn and discussed briefly in Section "
3.4.2.17 This beam model does not separately calculate primary and scattered radiation .
but instead utilizes tissue-air ratio(TAR), tissue-mazimum ratio(TMR), and OCR tables \
as a data base. The formula they used in their software was: :',
A
Dose = 100 (F—ij-)z-T(d,Wy)-OCR(d,u—a;y;:f::—:”’;M’F 'E
where: ::
. . (Tf_—y)2 is an inverse square correction for the difference in the distances: (F),

- the distance from the beam source to the calibration point(also called the point of
reference), and (F — y), the distance along the central axis from the source to the
plane containing the point of interest. (y is the length of the segment from the point

of calibration to this plane.)

e 5'(d, W) is the TAR or TMR for the beam ficld size W, at depth d in the tissae of

the point of interest.

. 17Ezternal Beam Program: User’s Guide, Clinical Unit of Memorial Sloan-Iettering
‘ Cancer Center, Memorial Hospital for Cancer and Allied Discases, New York, New York,
November 1971.
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e OCR(d,#) is the OCR of the point of interest at depth d where the off-center
y

distance, z, is represented as a fraction of the beam ficld size, Wy.

. % is the relationship between the TARs or TMRs of field width W, at depths
s and r. s is the slant height of: the depth of the point along the beam central
axis, translated to the line from the beam source to the point of interest. 7 is the
effective pathlength and is discussed further in Section 3.6. These last two terms are

the manner in which this method corrects for obliquity and inhomogeneity.

o WF is a correction factor for any beam shaping wedges. This topic will not be

addressed.

This method retreives all the TAR, TMR, and OCR data from stored tables and
computes the percent of the dose delivered to the point of interest based on the dose at
the reference point. Because this method does not compute a scattered dose, there is only
one ray-tracing computation per point. This makes the calculations much faster since
ray-tracing is the slowing factor in radiation dose calculations. Therefore, the Memorial
Hospital method of radiation dose calculation is the method of choice for the University
of Washington Radiation Oncology Center. There is a certain loss of accuracy over some
methods, but at a tremendous gain in speed. As long as the accuracy remains sufficient to
allow the planning of radiation therapy, this is obviously the best solution. Since the main
slowing factor remains the ray-tracing of the beam and the computation of the effective
pathlength, there have been numerous research eflorts into the most effective method of

performing this calculation. These will be addressed in the following sections.

3.6 Effective Pathlength

In all the different beam models there is one common calculation that is necessary in
all of them: finding the distance from the radiation source to the point of calculation or

point of interest. This concept is the ‘eflective pathlength’ and is central to al] algorithms
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which must calculate the radiation dose in a heterogeneous medium. The calculation
involves a method of ray tracing and incorporation of the density along that path. Three
methods of accomplishing this will be discussed in the following sections and one of these,
the Bentley-Milan Method, in the following chapter with the implementation.

The basic formula for determining the effective pathlength is:

effpathlen = /SP p(r)dl (3.4)

where:
e S is the source point.
e P is the calculation point.

e p(r) is the heterogeneous medium density.

3.6.1 Bentley-Milan Metho

The Bentley-Milan Method'® considered the solution to the eflective pathlength to
be a sum-over-segments problem. This was accomplished by finding the intersection of
the beam with all the contours over an array of endpoints and sorting tﬁe points of each
ray-trace by distance from the beam source. As each intersection point is found, the index
of the contour that it intersects is assigned to the point. Based on this index, it can be
determined whether or not the segment is entering a new contour, exiting an old one, or
exiting the current one. The length of each segment is computed and multiplied by the
density of that region. In this manner the segments are computed from the source to the
calculation point. The formula for the effective pathlength (equation 3.4) expressed as a

sum-over-segments is:

18R. E. Bentley and J. Milan, The Storage and Manipulation of Radiation Dose Data in
a Small Digital Computer, British Journal of Radiology, Volume 47, Number 554, February
1974, pp. 115-121.
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J=N,
eflpathlen = Z L(7)pe(7) (3.5) ::~

j=1
where:
e N, is the number of segments.

e /,(7) and p,(5) are the length and density of segment j, respectively.

Since this is the current method implemented in the program in use at the University of

Washington Radiation Oncology Department it was used throughout this thesis.
3.6.2 Siddon Method

In the method by Siddon!® the solution proposed was to determige the eflective path-

length not as a sum-over-segments as in the Bentley-Milan case but as a sum-over-regions.
For the sum-over-segments solution the points had to be ordered from source to calcula-
tion point, and the number of segments, lengths of the segments, and the density of the ,:j
segment had to be determined. As discussed in the Bentley-Milan Method this required q
solving the topological problem of which region contained a particular segment for the de-

termination of the density for that segment by use of an index. What Siddon proposed was

to avoid this topological problem and solve the pathlength as a sum of the inhomogencous

regions as follows:

1. Compute the intersection of the beam with each contour individually and determine

the length of each of these segments.

2. Next find the ‘effective density’ of the segment as a difference between the contour of

’. the segment and the contour immediately enclosing the first contour. (Using figure
! 3.6 on page 28 it can be seen that the effective density of the third contour would
5 be: p(3)' = o(3) — »(2).)

19Robert L. Siddon, Calulation of the Radiological Depth, Medscal Physscs, Volume 12,
Number 1, January/February 1985, pp. 84-87.

IR S R VIR




e e R R T At IR R B b o - MR PN S i Al Ak A Aat i i it Aadh A A Ach Al Anil Al Sat S ins S At Al Sod Baf At Al wal el aad aod G ol

27

3. Sum the values of the segments times their respective densities. So the sum-over-

segments solution (equation 3.3) yields for figure 3.6:

effpathlen = 1,(1)ps(1) + 1,(2)p4(2) + 1:(3)ps(3) + La(4)p,(2) + L. (5)p4(1)

And the sum-over-regions solution:

5 effpathlen = L,(1 + 2+ 3+ 4+ 5)p,(1) + L,(2 43 4+ Dpa(2) + 1,(3)p.(3)'
h where:

X e l,(numbers) is the sum of all those segments.

e 2.(1) = pu(1)
® 0,(2)" = pa(2) — pa(1)

e p:(3) = pa(3) — p4(2)

Since this method did not require solution of the topological problem as discussed

Siddon determined through his bench-marking that it was eight times as fast as the sum-

over-segments solution. There is a different topological problem in his method, however,

bt

of finding which contour is enclosed by which. Siddon proposed that this be handled by
the technician in an interactive manner. Since this thesis takes the approach that all 1
calculations should be handled by the computer based on o:'¢ set of input data, Siddon's e

interaction is not acceptable as a method of eflective pathlength calulation.

3.6.3 Mohan and Antich Method ‘1
1
Mohan and Antich®® proposed a sort of ‘inner contour subtraction’ idea. It is similar
1
to the sum-over-regions solution in that the pathlength for each contour is compnted !
i

individually; however in this case a fractional pathlength is introduced as: !
20R. Mohan and P. Antich, A Method of Correction for Curvature and Inhomogencitics ;‘:

in Computer Aided Calculation of External Beam Radiation Dose Distributions, Computer
Programs sn Biomedscine, Volume 9, Number 3, May 1979, pp. 247-257.
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efipathlen = rL
where 7 is the fractional pathlength.
Mohan and Antich proposed that the fractional pathlength be computed for the path-
length in the following manner:
% 1. Find the fractional value of each segment with the total pathlength of the beam.
. 2. Find the effective density in the same manner as proposed by Siddon.
: 3. Finally, find fractional pathlength, r, by summing these segment fractional values
‘ times the effective densities. The formula is:
i r=pu| 3 (=06 + (o2 — o)1 D_(=1V & + (o3 — o)1 D_ (1)t} + ---
R i J k
y where:
o ti, t/, t* represent the fractional distances from the source to each intersection.
e p; is the density of the sth contour.
This method, however, requires more calculations than the Bentley-Milan solution and
. is slower to find the effective pathlength.

3.7 Future Directions

The current direction of the research in computer usage in radiation therapy is towards
the development of more efficient and accurate algorithms for the computation of radiation
distribution. There are several examples of this, including the Delta Volume Method
: discussed previously. While this has led to the development of a more accurate method
of determining the radiation dose distributions, the time was extremcly lengthy. This

research is absolutely necessary and positive for the development of better ways to provide
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these distributions to the clinician, but the amount of effort applied to make this type
of research into usuable application software is much less than necessary. Cunningham

pointed out in his article?! that

Following the development of small computers a number of commercial

companies have taken over the job of supplying computerized treatment plan-

™y

ning equipment to the radiotherapy community. The chief intent of this devel-
opment is to supply fast, graphically oriented displays of paticnt cross-sections
and dose distributions. Innovation, where it has taken place, has been in fj-.;

packaging rather than in the content and few calculation methods have been

n
&

introduced since the formative period.

v
v,
G

Most of the research has been in the area of more accurate methods of determining the
radiation dose distribution, not in developing a manner of presenting a current method
fast enough for everyday use. If the efforts of all the research is to benefit the patients '.'
then more must be done in the area of providing usable software with the most reasonable K

(fastest) method of calculation.

21J. R. Cunningham, Computer Methods for Calculation of Dose Distribution, Radiation .
Therapy Planning, Bleehan, Glatstein, and Haybittle, ed., 1983, page 230.
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Chapter 4

Two Dimensional Methods

This chapter will discuss the two methods of doing the two-dimensional effective path-
length correction for inhomogeneities in external beam radiation dose distribution calcu-
lations that were implemented and compared. These two methods differ in their ways
of representing contours and performing ray tracing for the radiation beam, then both
use the Bentley-Milan Method of calculating the effective pathlength as implemented by
Dr. Ira J. Kalet of the Radiation Oncology Department of the University of Washing-
ton Hospital. They are: the implementation of the Bentley-Milan Method that has been

completed by Dr. Kalet, and the implementation of strip trees.

4.1 The Bentley-Milan Method

In this implementation the contours are translated from their current coordinate sys-
tem to a coordinate system formed with the radiation beam along the z-axis in a method
developed by Bentley and Milan ! (see Figure 4.1). This requires a translation and rotation

of the axes and all coordinates are translated by the standard rotation formulas:
znew = (zold — newzorigin) x cos § + (yold — newyorigin) x sin ¢

ynew = —(zold — newzorigin) x sinf + (yold — newyorigin) x cos §

IR. E. Bentley and J. Milan, The Storage and Manipulation of Radiation Dose Data in
a Small Digital Computer, British Journal of Radiology, Volume 47, Number 554, February
1974, pp. 115-121.
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T L T

Once all coordinates have been translated, they are projected onto the y-axis. Intersections
are then determined to occur when the projected y-value of the current point crosses the
projected y-value of the calculation point and the z-value of the current point is less than

the z-value of the calculation point.

new y-axis old y-axis

beam source

. \ beamangle (9) old x-axis

new Xx-axis

Figure 4.1: Rotation of axes in Bentley-Milan Method

Once the intersection points have been determined, the records of these intersection
points are sorted into decreasing value from the beam source using the following Wirth

algorithm where in this case the testedfield is the x-coordinate:?
Algorithm 4.1 : SORT ROUTINE
for i := 2 to the number of intersections do

temp := intersectionpoint[i]

intersectionpoint[0] := temp

ZN. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Inc., Englewood
Cliffs, N. J., 1976.
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j i=i-1
vhile temp.testedfield > interpt(j].testedfield do

N intersectionpoint[j+1] := intersectionpoint(j]
VLD B ¥
intersectionpoint[j+1] := temp
: The final step is to determine the effective pathlength. This algorithm takes the in-
i tersection points, determines the distance between each point, the density of the matter

between them, and then computes the effective pathlength which is merely the sum of the
distances times the density. It is an implementation of the sum-over-segments solution
"..j developed by Dr. Ira Kalet of the University of Washington Radiation Oncology Depart-
E ment. The arrays density and intlist are last-in, first-out stacks which keep track of the

nesting of the contours.

Algorithm 4.2 : SUM-OVER-SEGMENTS
assign current density and index to level O
for 1 to number of intersections do
assign current intersection point to temp values
next := number + 1
if next < number of intersections then
assign next intersection point to temp values
length := current point to next point distance
density := density([levell
if the points are of the same index{contour} then
{going to next level down,i.e.,leaving contour}
decrement level
else {going up)

{save values for vhen passing through this contour}

increment level

¢
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density[level] := density of current point
intlist[level] := index of current point
else {segment goes to calculation point}
length := current to calculation point distance
density := density[levell]
effectivepathlength := effectivepathlength + density * length

end

4.2 Strip trees

The second method investigated was the method of representing a curve by strip trees,
as defined by Duda and Hart 3 and refined in an article by Dana Ballard, to attempt to
obtain the logarithmic order time provided by a tree data structure. * The strip tree is
then used to find all the intersections of the beam with the contour through the intersection

of the beam with the strip tree extents.

4.2.1 Definition

A strip S is defined by Dana Ballard % to be the six-tuple (xp,x., w;, w,) where x; =
(75, ys) denotes the beginning of the strip as determined by a directed segment and x, =
(ze,yc) the endpoint. w; and w, denote the maximum distances to the side of the strip as
determined by the points of the curve between the endpoints (See Figure 4.2). In addition
to these six parameters the slope of the segment from x, to x., mv, was added because of
its prevalence in the intersection routines discussed later.

A strip tree is then defined as nodes that consist of (Strip, LeftSon, RightSon) where
LeftSon and RightSon are strip trees or null.

SR. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley-
Interscience, New York, 1973.

4Dana Ballard, Strip Trees: A Hierarchical Representation for Curves, Communications
of the ACM, Volume 24, Number 5, May 1981, pp. 310-321.

$Dana Ballard, page 312.
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Figure 4.2: Strip Tree Extent S

An important concept in strip trees is to determine whether or not a strip is regular.

A strip is defined as regular if it’s underlying curve: 5
1. is connected,
2. has its endpoints touching the ends of the strip. -

Some examples of regular and non-regular curves are given in Figure 4.3.

v\ o
\J ~ .

Regular Non-Regular .

Figure 4.3: Examples of Regular and Non-Regular Curves
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4.2.2 Implementation

The contour is passed into the routines as a list of points. The first step is to find
the furthest two points apart to insure that the strips remain regular and make these two
points the endpoints of the first two strips. One strip is directed from point A to poiut B
and the second the other direction, with all points in between assigned to the two strips
according to their position in the ordered list describing the curve.

With the strip record defined as follows:

strip =
record
xb, yb., xe, ye, wl, wr, mv : real;
LSon, RSon : pointers to strips;

end;
the strips are recursively determined by the following method:

1. Using the endpoints determine the slope of the dirccted segment.

2. Determine the perpendicular distance of every point between the endpoints from
the directed segment. This is accomplished by a polar transformation of the axes
to make the strip segment the x-axis. The angle between the strip segment and the
line from x; to each point yields the direction to the left or right of the segment and

the new y-coordinate of each point the distance w; or w,.

3. Choose the larger value of w; and w, as the next point to divide the strip into the
two sons, with the line from x; to this point as leftson and the line from this point

to x. the rightson.

4. Repeat recursively until there are no more points between the segment endpoints or

both w; and w, are zero.
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4.2.3 Intersection Routine

The intersection of the radiation beam with the strip extent was accomplished by an
intersection of lines solution. Each point at the corner of the strip extent is determined as
needed and this line segment and the beam ray intersected. This is accomplished in the

following manner:

1. Determine the endpoints of the corners of the strip extent. Two diflerent methods

of this were tested.

(a) The first method was by using trigonometric rules. The slope of a line is %}

and the tangent of 8 is equal to the slope when defined as shown in Figure 4.4.

The slope of the line from the endpoint to the cornerpoint is —m

since it is perpendicular to the segment by definition.

Cornerpt

Ay wy

Az Endpt

Figure 4.4: Trigonometric Method

So the following equation can be used to find the cornerpoint:
atan(m) = 8

Zeorner = Tendpoint + wsdth X cos §

Yeorner = Yendpoint + width x sin§
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where width is w; or w, depending on the side of the strip, corner means the
’
corner of the extent to be determined, endpoint is the end of the segment being ;{
e
used to determine the corner, and m is the slope of the line from the endpoint to t(
\
the cornerpoint. Special cases had to be developed for horizontal and vertical e
- lines because the slope values are 0 and undefined respectively.
. N
X (b) The second method was done by simultaneous solution of the distance between
- two points:
Ath)2 2 2
: (width)* = (Zcorner — Iendpos'nt) + (Yeorner — ymdpoinl) DS
3 =
b . . B
€ and the two-point slope equation -
- ¥
Yeorner — Yendpoint = M (Zeorner — Iendpoint) .
to yield :::
width -
Teorner = Tendpoint + '\'/T—m—'?o—p_c—)f =
Once the x value has been determined the y value is found by solution of the :.
: : : . 2,
two point slope form of the equation. Special cases again had to be developed -
for horizontal and vertical lines. <
(c) When both methods were implemented and timing of the methods was ac- R
complished the results showed a 10% decrease using the second method. The =]
. . . . . . ‘\
trigonometric method was too slow because of the infinite series sclution of the .

trigon_netric functions. The results are shown in Table 4.1. The times were :
- determined by using the ‘time’ variable in Unix on a VAX 11-780, where the
program was executed on the same contour of points with the only difference O

being the method of endpoint determination.

2. After determining two corner points determine the constants in the equation Az + .

s a t a8 e a]

By + C = 0 for this line. This is done by solving this equation based on the axes -+
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i Number of | Trig Method | Math Method
5 Contours Time Time e
A 1 56.5 45.7 3
? 2 81.3 76.8 ;.-_
3 94.0 859 -
4 109.7 100.0 ~
5 130.5 112 v
g All times are in seconds
g Table 4.1: Comparison of Endpoint Determination Methods
"
! intersections to yield the following: e
b .
5 A= —(yptz — ypt1) -
: 3
P B = zp2 — 2p1y
' C=—(Ax zp + B x yp1) g
' Special cases involving vertical and horizontal lines solve easily since the equation .
for a line reduces to the z or y term equal to a constant. 1
3. Determine the constants for the beam line in the same manner. )

4. Once the constants have been determined the intersection of two lines is found by -
the use of the following equations. These were derived from the matrix solution of

the equations of the two lines at the intersection point.

B]X02—32XC| :
Ay X B; - Ay x B, i

CIXA;_’—C:XAl
Alez—Aszl

int =

yint =

5. The intersection coordinates must now be tested to determine if the intersection ‘o
point is between the endpoints of the strip extent segment and the beam segment.

This is accomplished by the following algorithm:

min[min(zy, z2), min(z}, 25)] < zint < maz[maz(zy, 22), maz(z}, 15)] -
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min[min(yy, y2), min(y},y2)] < yint < maz(maz(y,y2), maz(y}, v2)]

where the points are: Beam Source = (zy,y))
Beam Endpoint = (z2,y2)
Strip Endpointl = (z},y})
Strip Endpoint2 = (z5, y3)

6. If this item is determined to be a good intersection point by the above algorithm
and the strip is a leaf node then this point is inserted into the intersection point
list. If the strip is not a leafl node the L.Son and then RSon are tested. If there is no

intersection the remaining sides of the strip extent are tested in order. If the beam

does not intersect the strip extent it does not intersect the curve.

. Once all the intersections points have been determined they are sorted by algorithm

-1

4.1 on page 32. The effective pathlength is then computed using algorithm 4.2 on

page 33 as implemented by Dr. Kalet.

. 4.3 Comparison of Methods

% In determining the most effective method for use by ¢linicians or technicians the most
p important aspect is speed. In routine use by these personnel immediate response and
- interaction in treatment planning is the most cffective and eflicient use of their time and

the planning sequence.

When running these tests the calculation was conducted over a 40x40 (1600) array
of points. The beam source was maintained in one location and the beam endpoint (or

calculation point) was varied over the array with the effective pathlength calculated for

every point.
Table 4.2 summarizes the results conducted on a Vax 11-780 machine with the Unix

operating system. The ‘Total Pts’ listed in the table represents the total number of points

defining the contours.
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Number of | Bentley-Milan Program | Strip Tree Program
: Pts/Contour Time(sec) Time(sec)
\ 60 8.3 71.9
; 90 9.8 82.3
120 10.4 96.5
150 12.0 98.2
180 13.5 103.2
210 15.1 104.1
240 16.3 104.3
270 18.0 104.7
300 19.6 104.9

Table 4.2: Comparison of 2D Methods

The table figures reveal that for tkis application the Bentley-Milan Method is faster
than the Strip Tree Method. As the number of points defining the contour is increased the

Bentley-Milan Method shows a decidely linear increase in time. The Strip Tree Method

r
r
I
-
»
)
»

»
'
E
%
b
»

shows a curvelinear increase as the number of points increases that approaches 105 seconds.
Extrapolation of the graphing of these two functions shows that if the strip tree can be
assumed to approach 105 seconds then the two methods will intersect at a point where
there are 2100 points/contour, and if the last four points of the strip tree graph were taken

to be linear the intersection would be at 2850 points/contour. The actual intersection will

fall between these two values. However, an analysis of actual data from typical radiation
= treatment cases revealed that the number of points in a contour fell between 70 and 150

points. An analysis of the Strip Tree Method showed a major problem to be that the strip
! extent covers an area of (strip segment length x (uy + v, )) and that intersections can be
found with the strip extent that do not intersect the curve and are not discovered until

the strip tree is evaluated further down. This means that several branches of the strip tree

’-’- could be taken that later are found to be nil. The second and most major problem that
Z caused the strip trees version to be slower is that there are numerous expeusive calculations

to be done by the intersection routine. Two examples of these expensive calculaticns are

the intersection of lines solution with, possibly, all four sides of the strip tree extent and
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the algorithm to determine if the point is within the line segment. So the faster of the

two methods for this application is definitely the Bentley-Milan Version.
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Chapter 5

v
\-
° o l
Three-Dimensiona
®
Implementation
X
In this chapter the extension of the calculation of the effective pathlength into three- :
dimensions will be covered. ,;'-'
5.1 Coordinate Systems
v
The layout of the axes for this discussion will be ordered with the z-axis to the patient’s
left when the patient is prone, the y-axis directed into the patient and the z-axis directed N
towards the patient’s head. This places the z — y axes in the plane of the CT Scan. This {:
is slightly different than the axes definitions used by Siddon! but defined for the same .
reason: to put two of the axes in the plane of the CT Scan and one perpendicular towards
the patients’ head. -
5.2 Algorithm '
As discussed by Siddon and Kijewski®, insuring that the axes are defined as above
can reduce the problem to a two-dimensional one very easily. The algorithm used here N
'Robert L. Siddon and P. K. Kijewski, 3-D Ray Depth Calculation for Radiotherapy ;
Applications, In Proceedings of the Esghth International Conference on the Use of Com- R
puters in Radiatson Therapy, July 1984, pp. 201-204. o~
K

2Siddon and Kijewski, pp. 201-204.

v
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is similar to the one they describe but the main source for this algorithm came from
Kajiya.3 In this article the object is defined in two-dimensions and extended into three-
dimensions along a specified height, h. This is called a prism by Kajiya (See Figure
5.1). The three-dimensional ray is then intersected with the top and bottom of the prism,
the capplane and baseplane, respectively. The ray is projected into two-dimensions on
the baseplane and intersected with the coutours (Kajiya’s object). These intersections
are then to be projected back into three dimensions and sorted, with the capplane and
baseplane intersections, by distance from the beam source. The intersections are discerned

to be within the prism by a complicated algorithm to be fully covered later.

! —
! :
! —dm
ray [ N e T T~k
——————— - - ' \\
Pa =~ 1 N h
1 \‘

R Q. n

! \4 L\«\--

N
‘0 AN

Figure 5.1: A prism, with height h, as defined by Kajiya, with a ray shown striking the
side of the prism at point t and the baseplane, with normal n, at point ¢o.

3James T. ¥Xajiya, New Techniques for Ray Tracing Procedurally Defined Objects,
ACM Transactions on Graphics, Volume 2, Number 3, July 1983, pp. 161-181.
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5.2.1 Determination of the Plane Equation

In this case the contours are received in the same manner as the two-dimensional case,
from CT Scans. The height is determined by half the distance to the CT Scans on either
side. Since CT Scans may be taken very close together (as close 1 mm) this approximation
of the contour in 3d for such a small distance renders a very reasonable approximation of
the body. This will allow the computation of the effective pathlength to be done across
each of the CT Scans and summed for the total of the beam length.

Once the height is given the equations of the baseplane and capplane are determined.
This is accomplished by taking three points of the baseplane and calculating the vectors
from one point to the other two. These vectors are placed in normalized parametric form,

the dsrection cosines found and the constants in the planar equation Az+ By+Cz+D =0

are determined from the direction cosines. This method can be shortened because of the
use of common values throughout the method and is summarized below.

Given points: (z1,¥1, 21), (22, ¥z, 22), (23, ¥s, zs) determine V; and V2 as follows:

Vis(za—a1) s +(y2—w1) 7 +H(zz—21) k

Vo= (2 —21) s +Hys ~91) 7 +Hzs—21) &

These vectors are then normalized by their length, d, and the direction cosines for V;
determined by:
cosa = (z3 - 1) +d-
Vi
cos B ={(y2—y)+d-
Vi
cosy = (22— 2y) +d-
Vi
The direction cosines for V2 (a*, 3°, and 4*) are determined similarly.

The constants are found by the cross product of these cosines:

A=cosf x cosy* —cos 3* x cos~y
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B = cosy x cosa® —cosy* x cosa
C =cosa X cos B* — cosa® X cos B
D= —(Az; + By1 + Cz)

Once this is accomplished the equation for the capplane is determined in the same man-
ner except the coordinates are transformed to be the specified height above the baseplane.
In this special case where the baseplane lies in the z-y plane the capplane coordinates are
exactly height h above in the 2 direction. In the general case the coordinates would be

found by going h in the direction of the plane unit normal.
5.2.2 The Intersections

Once the baseplane and capplane equations are found the intersection of the beam
with these planes is needed. This is computed by the intersection of a line and a plane.
First the direction cosines as defined above are determined for the beam line and the
following algorithm evaluated.

If

Aplane X €OS Qin, + Bp(ane x o8 Biin, + Cplane X €08 Yfine =0

then the line is parallel

If the above equation is true apd
Apltme X Zyne + Bplane X Yline + Cplane X Zigne =0

then the line lies in the plane

Else

Apltme X Zijne + Bpiane X Yiine + Cplane X Zline + Dplcmc
Aplane X COS Qine + Bplanc X €08 fiine + Cplane X COS8 Yline

t =

And the intersection points for the two planes are:

Tint = 23 —t X cosa
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Yint = Y1 —t x cosf

Zint = 21 — U X cosy
5.2.3 Two Dimensional Intersections

The intersection of the contours by the beam in the baseplane is then accomplished
by translating the beam points into the baseplane and performing the two dimensional
intersection by one of the methods discussed in Chapter 4. Note that the points used are
the beam source and beam calculation points, not the baseplane and capplane intersection

points.
5.2.4 Sort Routine

Once all the intersections have been found they are then translated back into three

dimensions along the beam line. This is done by solving the scalar equations for z to yield:

Zint — Theamsouree
Zint = X (zcalcpt = Zyeamsource) + Zbeamsource
Zealept — Téeamsource
24

If the difference in the z values is zero then the solution of the scal?r equations with the
y values is used in the above equation. Once all the z values have been found the distance
from the beam source is calculated and the points are sorted by increasing distance from
the beam source. This is done by algorithm 4.1, where testedfield is the three-dimensional

distance.
5.2.5 Determination of the Prism Intersections

The evaluation of the iutersection points to determine if they are entering the prism

is the next step. From the article by Kajiya* the simplistic algorithm is:
1. If the intersection point is a capplane strike point then

(a) If inside the contour then intersection point is good.

4James T. Kajiya, New Techniques for Ray Tracing Procedurally Defined Objects,
ACM Transactions on Graphiscs, Volume 2, Number 3, July 1983, page 171.
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(b) Otherwise it is not in the prism and continue to next point.
2. If the intersection point is a baseplane strike point then

(a) If inside the contour then intersection point is good.
(b) Otherwise it is not in the prism and continue to next point.
3. If a contour intersection then
(a) If the intersection point z coordinate is between the capplane and baseplane

then the intersection point is good.

(b) Otherwise, it is not in the prism and continue to the next point.

The implementation was very similar except for some minor variations, the most obvi-
ous of which is that there are multiple contours to be intersected in the radiation therapy
application. The algorithm developed will be summarized here. Note that if the contour

has not been crossed then there can be po valid intersection points. The algorithm is:

1. While not contour intersection get next intersection point {Find the first contour

intersection}

2. If the z-coordinate of the contour intersection is between the capplane and baseplane

then inside prism {entered through side}.

3. Otherwise get next intersection point. {Go to next point and test all points now

that a contour has been entered}

4. While not inside prism do {Since the first contour intersection was not valid check

all intersections until inside prism }

(a) If intersection point is baseplane or capplane then inside prism {entered through

the bottom or top}

(b) Otherwise:

"‘:"“l:';\‘l L : . ) . )

a
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i. If contour intersection z-coordinate is between the capplane and baseplane

then inside prism (entered through side)

ii. Otherwise, get next intersection point. {If contour intersection and not

within the prism z values then try next point}

5. While (contour intersections) and z-coordinate is between baseplane and capplane
add point to valid intersection point list, get next point. {As long as there are

contour intersections they are still within the prism.}

6. {Now have reached the last prism intersection by exiting through the side or reaching
a baseplane or capplane intersection} If not (contour intersection) and (still inside
any contour) then add baseplane or capplane to the valid intersection list. {If still

inside any contour then exiting through the bottom or top of the prism.}

If the contour is entered and it is not a valid intersection then the level is incremented
and the index and density of the contour are saved. This is necessary because in the
Effective Pathlength Procedure if the prism entry is through the capplane or baseplane

these values are needed for the effective pathlength computation.
5.2.6 KEffective Pathlength

Algorithm 4.2 used in this version is exactly the same except that the level of entry
may be changed by the fact that a baseplane or capplane intersection could enter the
prism already inside a contour. This was handled with the algorithm just covered in

Section 5.2.5. If a contour was entered and the intersection point was outside the z-value

necessary to make it a prism intersection than the level was incremented and the density
and index maintained in an array. It was also necessary to keep an array of boolean
F values for determining whether a contour had been entered already and was being exited

or reentered. In this case the level and density array were again altered.

R B A N S
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5.3 Utilization

This algorithm is then applied to each of the CT Scans in order (See Figure 5-2) and
the effective pathlength computed for a three-dimensional array of points in the region
of interest to determine a wire-frame diagram of specific radiation levels. The remainder
of the computations to determine the adiation dose are handled by the software for

whichever beam model is being used.

Figure 5.2: Multiple CT Scans Represented as Slabs

5.4 Comparison of Methods

Testing was accomplished on the three-dimensional method by incorporating the two
two-dimensional methods. The data is represented in Table 5.1 and shows that the
Bentley-Milan Method is clearly the faster of the two methods. The reasons are the
same as for the two-dimensional versions. The three-dimensional algorithm is the same
in both cases and the two-dimensional versions remain unchanged. In the testing it was

also revealed that as the number of contours increased the Bentley-Milan Method also
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Number of Total Bentley-Milan | Strip Tree
Contours | Contour Pts Time Time
1 60 5.8 40.4
2 98 7.5 69.2
3 110 8.2 77.5
4 130 8.9 97.3
S 152 10.3 112.6
6 163 10.8 1168 ,
7 183 11.6 122.7

All times are in seconds

Table 5.1: Comparison of 3D Methods

had a 50% savings in space. The table was compiled by computing the intersections over
a three-dimensional area of 80 x 80 x 6 (x,y,z) incremented so that the number of points
checked was 9 x 9 x 3 (243 points). Note that this version was run on data that serves
as an example of the actual contours experienced in typical cases of radiation treatment

planning.

5.5 Conclusions

In this application the logarithmic time savings afforded by strip trees did not improve

on the linear method because of the small number of points in the contour. As determined

in Chapter 4, the contours would have to be extremely large to make the strip tree method

LA

useful.

»

A couple of alternatives to the prism algorithm, although somewhat similar, are: the

P
s

method developed by Wong et. al. already covered as the Delta Volume Method, and the

- T

method covered by Houlard and Dutreix. As described in Chapter 3, the Delta Volume

,"'. Method is a method of ray-tracing through CT picture element densities and was much

too time consuming. The second method involves the determination of optimal-triangular-
tiling reconstruction from planar contours obtained from CT Scans, as defined by Keppel

and Fuchs in separate papers. Then the ray-tracing method through these tiles was
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E: proposed by Houlard and Dutreix®. However, the prism method is more easily applied #
to the already parallel CT Scans, is much more elegant, and is an extremely orderly 2'.
implementation. .

x This prism implementation could possibly be used in other applications where ray-
E»h' tracing is necessary. The graphics applications of surface rendering and shading in three-
l dimensions may be worthwhile where the object could be easily defined by prisms. As _
Kajiya mentioned in his article, many objects can be defined as collections of prisms; E

among them, block letters, machine parts, and simple urban architecture models. The \

prism concept would be useful in cases where surfaces have essential symmetries and the :

problem can be reduced from three-dimensions to two-dimensions for the ray-tracing to

be time cost-effective. \
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5J. P. Houlard and A Dutreix, 3D Display of Radiotherapy Treatment Plans, Pro-
ceedings of the Eighth International Conference on the Use of Computers in Radiation
Therapy, IEEE Computer Society Press, July 1984, pg. 219 Y
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Appendix A

2D Bentley-Milan Version | ~

% The following pseudocode was written to supply specifics in some areas :}
X and plain language in others to allow the code to be condensed and included .
in this thesis while providing the basics of the program.

program contour(output, contourdata, beamdata);

begin

read all contour and beam input data;
procedure setupcontours(contourdata,beamdata,reference point)
{Translates and rotates coordinates as described in Section 4.1 and also
computes the projected y-value}

begin {setup procedure}

for all contours do

begin
{These values determined as described in Section 4.1 and

placed into the input contours)

xtemp := xlist[§] - xref; ytemp := ylist[j] - yref;
xtrans[j] := xtemp * cos(beamangle) + ytemp * sin(beamangle);
ytrans[j] := -xtemp * sin(beamangle) + ytemp * cos(beamangle);
yproj[j] := ytrans[j]l*(sad/(sad-xtrans{j]));

end;

end; {procedure}

procedure pathlength(beamdata, input contours, reference point)

{This procedure compares the projected y-values and if there is a crossing
over the calculation point projected y-value, checks the x-valme, then
places the point into the intersection point array. The next step is to
sort the points using Algorithm 4.1 from Section 4.1. The final step is
finding the effective pathlength using Algorithm 4.2 from Section 4.1. }

begin

number of intersections := O;
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for all contours do
begin
{set starting parity based on above or below the calculation poinmt}
if yprojlpeint1] > yproj[calculation point] then
parity := up else parity := down;
{now go around the contour}
for all points do
begin
crossing := false;
case parity of
up: if yprojlnext point] <= yprojlcalc point] themn {crossed calc pt}
begin crossing := true; parity := down end;
down: if yprojlmext point] > yprojlcalc point] then {crossed calc pt}
begin crossing := true; parity := up end
end; {case of parity}
if crossing then {check x-value to see if it is a real crossing}
begin
if xvalue[nextpoint] <> xvaluelcurrentpoint] then
begin
{Determine portion of segment between points}
fraction := (ytrans{i+1] - ytrans[i]) / ¢
(xtrans[i+1] - xtranms[il);
xtemp := (yp - ytrans[i] + fraction * xtrans{i]) /
(yp/sad + fraction);
end
else xtemp := xvalue[currentpoint];
if xtemp > (x of calc point) then {crossing is real} .
begin {add new crossing record to crossing list}
increment number of intersections;
{Add x,y,density and contour number to intersection array}
end;
end {if crossing is real}
end {for all points}
end {for all contours}
{Algorithm 4.1 as described in Section 4.1}
for i := 2 to number of intersections do
begin
temp := intersectionmpoint(i);
intersectionpoint[0] := temp;

j i=4-1;

while temp.x > intersectionpoint{j].x do

begin
intersectionpoint[j+1] := intersectionpoint([j];
Ji=3-1

end;

intersectionpoint[j+1] := temp;
end;
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{low compute the pathlength using Algorithm 4.2 from Section 4.1}

level := 1;
: if number of intersections > O then
) begin
. dlist[level] := assocdensity;
; nlist[level] := index;
end;

’ dlist[0] := 0.0;
nlist{0] := O;
effpathlength := 0.0;
for internumber := 1 to number of intersections do
begin {go through crossing list}
assign current intersectionpoint to tempi
- next := internumber + 1;
) if next <= number of intersections then
. begin {there is a next crossing}
- assign next intersectionpoint to temp2
length := distance between templ and temp2;
density := density[level);
{ now must determine if we are entering a new region,
or leaving the current region for a "lower level" }
if indexoftempl = indexoftemp2 then
{going to next level down, i.e., leaving contour}
decrement level
else {going up a level}
{must save density and intlist values on stack}
density[level] := density of tempi;
intlist[level] := index of templ;
end {next <= pumcrosses, i.e. there was a next crossing}
else {this segment goes from the crossing to the computatiomn point}
begin
length := distance from current point to calculation point;
density := dlist[level];
end;
- {now we can add in the effective length of this segment}
effpathlength := effpathlength + density of path*length;
end; {end of list-done all crossings}
end; {procedure}
. {progranm}




Appendix B

2D Version of Strip Tree Method

The following pseudocode was writtem to supply specifics in some areas
and plain language in others to allow the code to be condensed and included
in this thesis while providing the basics of the prograa.

program 2d intersection(output, contourdata, beamdata);
function widpt(strip, list of points):furthest point from strip;

begin

{convert strip segment to polar coordinates}

pptl.x := endpt.x - beginpt.x;

if pptl.x = O then {vertical 1line} .

{cannot figure slope so set to zero as convention}
anglel := pi/2;
else
pptl.y := endpt.y - beginpt.y:
slope := pptl.y / pptl.x;
deltal := pptl.y / length of strip segment;
anglel := arcsin(deltal); :

{Now loop through all the points between the segment begin and endpoints
and determine the left(wl) and right(wr) distances. Then choose the
largest and make it the next point at which to divide the strip. }

wvhile not at segment endpt do
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begin
temppoint := next point{starting from segment beginpt};
PPt2.x := temppoint.x - beginpt.x;
PPt2.y := temppoint.y - beginpt.y;
{set angle of segment using 360 degree coordinates}
if ppt1.x > O then
if pptyl.y >= O then
angle2 := anglel;
else
angle2 := 2pi - abs(anglel);
else
if pptl.y >= O then
angle2 := pi - abs(anglel);
else
angle2 := pi + abs(anglel);
{Since the segment is the x-axis, the new y-coordinate is wr or wl}
ynew := -ppt2.x * sin(angle2) + ppt2.x * cos(angle2);
{now determine if to the left or right of segment}
if ynew >= O then
if ynew > wltemp then
wltemp := ynew;
wlpointer := temppoint
else
if ynew < wrtemp then
yrtemp := ynew;
wrpointer := temppoint;
advance temppoint to next point;
end; {while}
{Assign wl and wr to strip, them choose the largest and assign it to widpt}
procedure subtree
{Builds the strip tree recursively}
begin
widestpoint := widpt(strip, list of points); {call for widest point}
if widestpoint = nil then {no points in between that are not on segment)}
LSon and RSon := nil;
else
begin
new LSon strip;
beginpt := beginpt of father strip;
endpt := widestpoint;
subtree{recursively build tree}
nevw RSon strip;
beginpt := widestpoint;
endpt := endpt of father strip;
subtree{recursively build tree}
end;
end; {subtree}
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{Now the procedures and functions for the intersection routines}
function intpoints(linequations; beam segment; side endpoints):point;
{Takes the linear equations of the strip tree side and beam and the
side endpoints and determines if there is an intersection between
the segment endpoints of these two lines.}
begin
if (segment y values are equal) and (endpts yvalues equal) then
intpoints := nil; {parallel horizontal lines}
else
if (segment x values are equal) and (endpts xvalues equal) then
intpoints := nil; {parallel vertical lines}
else
begin
if stripextent.b = O then
slope = 0;
else
slope = - stripextent.a / stripextent.b;
if (slope = beam segment slope) and (stripextent.b <> 0) then
intpoint = nil; {parallel lines}
else
begin
{xint and yint determined by equations in Section 4.2.3)}
{Now check the intersection points as explained in Section 4.2.3}
if (the point is a good intersection point) then
intpoints := this intersection point;

L gn n a gn o o o

end;
end;

end; {intpoints}

procedure stripint(strip; beam; intersectionpoints);

{This procedure determines the linear equation of the beam segment, then
determines the endpoints of the side of the strip to be tested and its
linear equation, calls function intpoints for the intersection point,
then inserts the point if at a leaf node or recursively calls stripint}

begin

{first determine the linear equation for the beam segment}
if beam slope = O then
if (xvalues equal) then {vertical)
begin
linequation.a := O; .
linequation.b := -1; ol
linequation.c := x; -

end ;}j

else {all others}
begin o
‘ linequation.a := -(endpt.y - beginpt.y); ‘iﬁ
~ linequation.b := endpt.x - beginpt.x; R
linequation.c := -((lineq.a * beginpt.x) + (lineq.b * beginpt.y)); -
end; S
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2
n:=C
repeat <
{determine the endpoints and linear equation for the strip sides} :
increment n; v
if stripslope = 0 then e
begin ’
if (x-values equal) then {vertical)
begin ¥
if (endpt.y > beginpt.y) then .
begin {orientation of strip with endpt up} .
case n of o
1: begin -
x[1] := beginpt.x - wl; n
y[1] := beginpt.y; ~
x[2] := endpt.x - wl; s
y(2] := endpt.y; o
end; 3
2: begin -;
x[3]) := endpt.x - wr; B
y[3] := endpt.y; X
end; -:ﬂ
3: begin Y
x{4] := beginpt.x - wr; -
y{4] := beginpt.y; o
end; -
4: begin g
x[(5] := x[1]; .
y[56] := yl1]; N
end; ™
end; {case} ﬂ;
end {endpt greater} ]
else
begin
{similar to above only the beginpt is greater} N
end o
if (n equals 1 or 3) then <.
{same linequations as above for beam slope = zero} vy
else o
{same linequations as ‘all others’ from above} o
end; {vertical strips} o
else {horizontal strips} o
begin .
{determine poirts and equations similar to the vertical section} m
end; ")
end; {zero slope special cases} ;f
e
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else {for all others, i.e., all segments with non-zero slope}
. begin e
. if endpt.y > beginpt.y then ‘:.
. begin :
: case n of "
1: begin ;
x[1] := beginpt.x - t; -
y[1] := beginpt.y - mperp * t; i
. x{2) := endpt.x - t; "
N y[{2] := endpt.y - mperp * t; :*
- end; v
- 2: begin 5

x{3] := endpt.x - u;
y[3] endpt.y - mperp * u;
end;
{and so on}
- end; {case)
end {endpt greater}
else
. begin
) {do the same method for beginpt greater}
{Now tigure the line equation constants the same as was
done above for all others}
end; {else}
end {all other strips}
if (all linequation constants = 0){wl and wr = O} then

T ]

- =
e’
P 20y

L

% intersection points := nil; n := 4; tf
b else t-
y intersection points := intpoints(function call); o
- until (n = 4) or (intersection points <> nil); -3

if (both sons are nil){leaf node} and (intersection points <> nil) then
" place point in the intersection point list;
if (LSon <> nil) and (intersection point <> nil) then
recursively call this procedure to continue down the tree;
if (RSon <> nil) and (intersection point <> nil) then
recursively call this procedure to continue down the tree;
end; {procedure}

begin {main}
read data
for all contours do
buildtree;
for all contours do
stripint;

end. {program}
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Appendix C

AN
% "

*

Code for the 3D Version X

The following pseudocode was written to supply specifics in some areas and s
plain language in others to allow the code to be condensed and included in this
thesis while providing the basics of the program. In this case the code for the
3D version is presented as it was written to incorporate the 2D versionms.

oo

A

program 3d(output, contourdata, beamdata);

—
»

function planequation(3 points): record;
{determines the equation of the planes for the baseplane and capplane} -
begin
{compute the direction cosines for the 3 points}
d1 := 1 / distance from pointl to point2;
d2 := 1 / distance from pointi to point3; -
al := (pt2.x - pti.x) * di;
a2 := (pt2.y - ptl.y) =+ d1;
a3 := (pt2.z - pt1.z) =+ di;
bl, b2, b3 computed similarly for points 1 and 3 and using d2;
{plane equation constants are}
a := (a2 = b3) - (b2 * a3);
b := (a3 * b1) - (b3 = al);
c := (al = b2) - (b1 * a2);
d := -((a * pt1.x) + (b * pt1.y) + (c = pt1.2)); v
planequation := record with these values;
end; {planequation}
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procedure initprism(pointlist);
{Creates both the baseplane and capplane based on three baseplane points}
begin
pl1.p2,p3 := first three points;
baseplanequation := planequation(pi,p2,p3);
{add height to the z value}
capplanequation := plamequation(p1,p2,p3);
end; {initprism}
function planeintersection(plane, segment): intersectionpoint;
{Finds the 3D intersection coordinates between a plane and a line}
begin
d := 1/distance between segment points;
al,a2,a3 determined as in planequation;
tempi := (plane.a * al) + (plane.b * a2) + (plane.c * a3);
temp2 := (plame.a * ptl.x) + (plane.b * ptl.y) + (plane.c * pti.z);
if templ = O then {parallel to plane}
planeintersection := nil;
else
it (templ and temp2 = 0) then {linre lies in the plane}
planeintersection := nil;
else
begin
t := (temp2 + plane.d) / templ;
intersectionpoint.x := pti.x - (t * al);
intersectionpoint.y := pti.y - (t * a2);
intersectionpoint.z := pti.z - (t * a3);
end;
end; {planeintersection}

begin {main}
read data
initprism(first contour pointlist); {determine plane equations}
baseintersection := planeintersection(baseplane, beanm);
capintersection := planeintersection(capplane, beanm);
for all contours do
{24 strip building routines)}
for all contours do
begin
{Do 24 intersections in baseplane}
while (intersection points) do
begin
assign x and y and compute z by scalar equations from Section 5.2.4;
compute distance from beam source;
assign index as contour number and density of contour;
assign type of intersection as contour;
end
end
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w,
if (no intersections) then
) done; Ly
. else ﬁ
‘ begin o
{add baseplane and capplane to intersection point list} ﬁ
assign type of intersection; v
assign x,y.z and distance as above;
< repeat ..
! {do 2d intersection of contours with baseplane and capplane as the o
beamn endpoint. Then compute the closest distance to this point to
deternine the last contour that was entered before reaching the
X capplane or baseplane intersection. Save the index and demsity}
until (all contours tested);
index := index determined from above contour;
. density := density for same;

for 1 := 2 to number of intersections do {Sort Routine, Algorithm 4.1}
- {Same as covered in text and 2d Bentley-Milan Routine} Fd
‘ for all intersection points do =
: {This short routine is to insure that if there happens to be two oo
g intersection points with the same values because of a capplane or ;
X baseplane intersection at a contour intersection then the contour -]
) one is discarded and the prism intersection kept}
- {How search for the valid intersection points} 2
While (not a contour intersection) and (still points) do
get next point
incontour[this index] := true; {keep track of entering contour}
- if (contour intersection) and (z-value within prism) then
begin g
inside := true;
insert into valid intersection point array;

-
A
.
end T
.“

. firstin := contour {for effective pathlength later} { i
. end :

~ else .
‘ begin B

{entered contour but not within prism yet so need to save these ;

values for the effective pathlength procedure later} v

increment templevel; ' et
- assign point density into tempdensity[templevel]
- assign point index into tempindex[templevel) i
. end -
W {if this intersection was not good must now check for all prism intersections}
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while (not inside prism) and (still points) do
if (not contour intersection) then
begin
inside := true;
insert into array;
firstin := type of intersection;

if (this was a point of common intersection from above) then

increment templevel;
save density and index;
end
else {contour intersection}
begin
if (z-values within prism) then
begin
inside := true;
insert into array;
firstin := contour;
end

if incontour{index] then {already in contour and leaving)

set to false since leaving this contour;
decrement templevel;

else {entering contour}
get to true;

increment templevel and save density and index;

end; {contour)

{¥ow entered the prisa for the first time and must find all other intersection points}
vhile (typeofpoints = contour) and (z-values within prism) and (points) do

begin
insert into array;
if incontour{index] thean {already in so leaving)
set to false
else set to true; {else entering contour}
get next point;
end;
while (not inside) and (for all contours) do
check incontour to see if still inside any contour;
if (not contour intersection) and (inside) then
begin
insert into array;
inside := falsge;
end;
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{Now set up effective pathlength calculation}
if firstin = contour then
level := {;
else {entering prism after already having entered contours so use temps}
assign level, density array and index array the tempvalues;
if intersections then
density and index array entries := first point demsity and index;
{Row do effective pathlength}
{procedure is the same for the one given in the 24 Bentley-Milan version o
except for one added line. If the last intersection point is not a contour -

intersection then the calculation point is outside the prism before the _:3

end of the contours is reached so the density of path is set to zero :;4

before the effective pathlength calculation is done for this case.} ll!
end. {program} .
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